

## **Application**

The AES500 contactor is designed for stationary power applications, such as energy storage systems, UPS and charging station

#### **Certification Information**

Product complies with RoHS standard (2011/65/EU)



Nomenclature

AES500

M

AN

Series code:

"AES500" = AES500 Series

Coil Voltage:

"M" = 12 - 24VDC

Options:

"A" = With Aux. Contact (SPST-NO)

"N" = Non-Polarized Load Terminals



### **Performance Data:**

|                                      | Ma                             | in Contact                       | Expected Life                |                                                       |
|--------------------------------------|--------------------------------|----------------------------------|------------------------------|-------------------------------------------------------|
| Contact Arrangement                  |                                | 1 Form X (SPST-NO DM)            |                              | 500A@750VDC, 1000 Cycles<br>100A@1500VDC, 6000 Cycles |
| Max. Switching Voltage               |                                | 1500 Vdc                         | Electrical<br>Endurance      |                                                       |
| Rated Current                        |                                | 500A                             | Endarance                    |                                                       |
| Contact resistance                   |                                | 50mV@100A                        | Mechanical life              | 200,000 Cycles                                        |
| Max Short Circuit Current            |                                | 2500A (20s)                      | iviectianical ine            |                                                       |
| Short Term Current                   |                                | 1000A (1min.)<br>2000A (0.5min.) | AUX Contact                  |                                                       |
| Dielectric<br>Withstanding           | Between<br>Open<br>Contacts    | 4500 VAC/5mA/60s                 | Aux. Contact arrangement     | 1 Form A                                              |
| Voltage<br>(Initial)                 | Between<br>Contacts to<br>Coil | 4500 VAC/5mA/60s                 | Aux. Contact<br>Current Max. | 3A@24VDC/<br>3A@125VAC                                |
| Insulation<br>Resistance<br>(Initial | Terminal to<br>Terminal        | Min. 1000 MΩ@500Vdc              |                              | 100mA@8v                                              |
|                                      | Terminals to Coil              | Min. 1000 MΩ@500Vdc              | Aux. Contact<br>Current Min. |                                                       |
| Contact Voltage Drop<br>(initial)    |                                | Max. 0.5 mΩ<br>(Max. 50mV/100A)  |                              |                                                       |
|                                      |                                |                                  | Operate Time @ 25°C          |                                                       |
| Shock                                | Functional                     | 196m/s2 Sine half-wave pulse     | Operate Time                 | 40ms, Max. @20°C                                      |
|                                      | Destructive                    | 90m/s2 Sine half-wave pulse      |                              |                                                       |
| Operating Temperature                |                                | -40 to +85°C                     | Release Time 10ms, Max. @2   | 10 May @20%                                           |
| Humidity                             |                                | 5% to 85%RH                      |                              | 10ms, Max. @20°C                                      |
| Weight                               |                                | 1.32 Lb. (600g)                  |                              |                                                       |

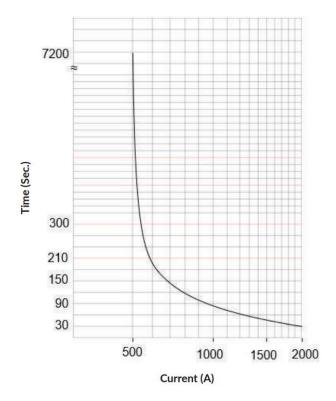
#### Note:

<sup>1.</sup> Do not meet dielectric & IR after the test.

<sup>2.</sup> ON:OFF = 1s:9s.

<sup>3.</sup> The ambient environment of application should not cause any dewing or icing inside the relay. Otherwise, the relay may fail to work consequently.

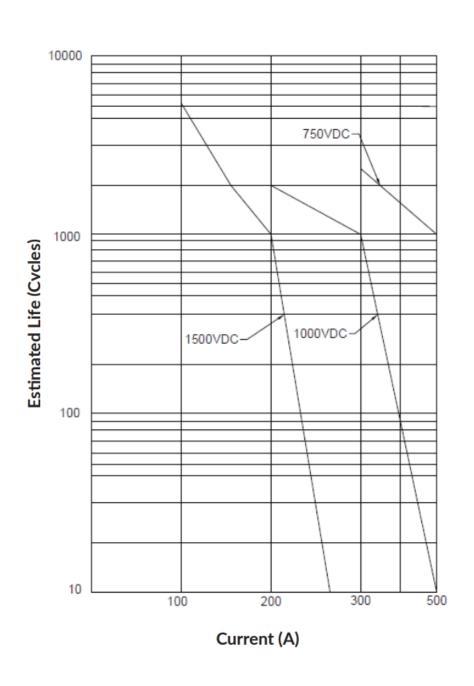



## Coil Data (Cont.):

| Coil Data                   |                                          |  |  |  |
|-----------------------------|------------------------------------------|--|--|--|
| Nominal Voltage             | 12-24 Vdc                                |  |  |  |
| Pick-up Voltage (20C)       | 8-9 Vdc                                  |  |  |  |
| Drop-out Voltage (20 C)     | 5-7 Vdc                                  |  |  |  |
| Max Inrush Current (20 C)   | 3.8A                                     |  |  |  |
| Avg. Holding Current (20 C) | 0.34A@12Vdc<br>0.16A@24Vdc<br>0.1A@36Vdc |  |  |  |

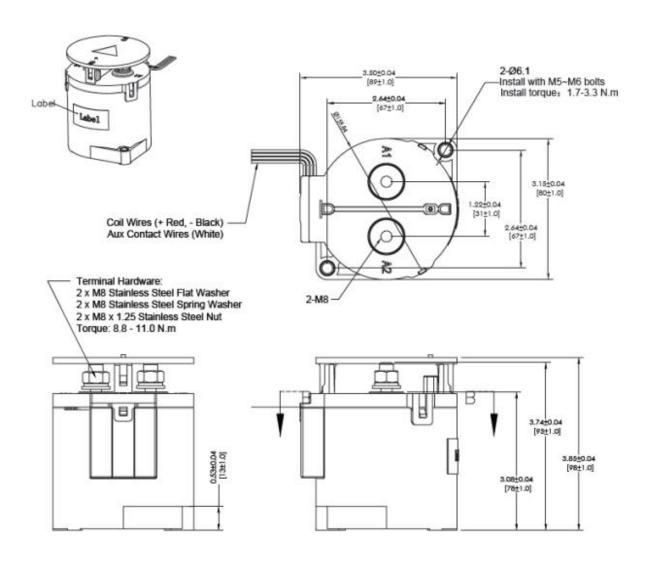
#### **Performance Data**

#### **Carry Current Performance**


Carry current performance (@ 20°C). The cross-section area of copper Bus is ≥300mm2, the charted data is for reference only






#### **Electrical Life**

Estimated Make and Break Resistive Load Ratings





### **Outline Daimonion: Inches (mm)**





#### **APPLICATION NOTES:**

- 1. To prevent loosening, washers should be used whenever the contactor is installed. All terminals or copper bar must be in direct contact with the contactor's main terminals. Please control the screw tightening torque of each part within the specified range in the table below. If the torque exceeds the recommended range, it may cause damage to the sealed cavity and thread damage.
  - Contact torque: 6.0-8.0 N.m (Max depth, 12 threads)
  - Mounting torque: 1.7-3.3 N.m
- 2. Products with polarity marked on the load end must be used correctly according to the product label. When the load connection polarity is reversed, the electrical characteristics promised in this manual cannot be guaranteed.
- 3. Products with a coil economizer are already equipped with back EMF circuits, so there is no need to use surge protectors.
- 4. Avoid installing the contactor in a strong magnetic field environment (near transformers or magnets) and avoid placing the contactor near objects with heat radiation.
- 5. When continuous current is applied to the contacts of the relay, and the Coil is turned on immediately after the power is cut off. At this time, as the temperature of the coil increases, the resistance of the coil will also increase, which will increase the pull-in voltage of the product, which may result in exceeding the rated Pull-in voltage. In this case, the following measures should be taken to reduce the load current; limit the continuous power-on time or use a coil voltage higher than the rated pull-in voltage.
- 6. When the voltage applied to the coil exceeds the maximum allowable applied voltage, the coil temperature may rise and lead to coil damage and inter-layer short circuit.
- 7. The rated values in the contact parameters are values for resistive load. When using an inductive load with L/R>1ms, please connect a surge current protection device to the inductive load in parallel. If no measures are taken, the electrical life may be reduced and the continuity may be poor. Please consider sufficient margin space in the design.
- 8. Supply power must be greater than coil power or it will reduce performance capability.
- 9. Please do not allow debris and oil to adhere to the main terminals; Make sure that the main terminals are in reliable contact with the load conductor, otherwise the temperature rise of the terminal / conductor connection may be too high due to the excessive contact resistance
- 10. Please do not allow debris and oil to adhere to the main terminals; Make sure that the main terminals are in reliable contact with the load conductor, otherwise the temperature rise of the terminal/conductor connection may be too high due to the excessive contact resistance.
- 11. The load conductor must have the corresponding current load capacity and heat dissipation capacity (it is recommended to use a copper bar with min 325mm2),), to prevent overheating and affecting the life of the contactor.
- 12. Is impossible to determine all the performance parameters of contactors in each specific application, therefore, customers should choose the products matching them according to their own conditions of use. If in doubt, contact Altran, however, the customer will be responsible for validating that the products meet their application.
- 13. Do not use if dropped.
- 14. Altran reserves the right to make changes as needed. Customers should reconfirm the contents of the specification or ask for us to supply a new specification if necessary.